

Gene Expression and Genotype

Dr. Mohanad Kareem

The Central Dogma

The central dogma states that information in nucleic acid can be perpetuated or transferred, but the transfer of information form into protein is irreversible.

Gene Expression

Genes Can Be Expressed with Different
 Efficiencies at Different Times and Environments

Importance of reverse transcriptase primers

• Oligo (dt)

Random hexamer (NNNNNN)

• Specific

• One-Step RT-PCR

• Two-Step PCR

Choosing between one-step and two-step RTqPCR

Two-Step Protocol	One-Step Protocol	
Primers used in RT	•Oligo(dT) primers •Random hexamers •Gene-specific primers •A mix of these	•Gene-specific primers
Advantages	 Choice of primers Optimize reactions for maximum yield Modulate amount of RT that goes into PCR— controlling for target abundance Perform multiple PCR reactions on the same cDNA sample Adjust for challenging PCR (e.g., GC-rich sequences) Experiment with different RT and Taq enzymes 	 Quick setup and limited handling Easy processing of multiple samples for repetitive tests, or high-throughput screening Fewer pipetting steps, reducing potential errors Eliminates possibility of contamination between the RT and qPCR steps
Considerations	 Requires more setup, hands-on, and machine time Additional pipetting increases the chances for experimental errors and contamination Uses more reagents 	•Must "start over," or save RNA aliquot and perform new RT to analyze new target or repeat amplifications •Reaction conditions are not optimal—efficiency & thus quantification are affected •Primer dimers a bigger potential problem
Best for:	•amplifying multiple targets from a single RNA source •when you plan to reuse cDNA for additional amplifications	 working with multiple RNA samples to amplify only a few targets assays performed repeatedly

Housekeeping gene

A gene involved in basic functions needed for the sustenance of the cell. Housekeeping genes are constitutively expressed

(they are always turned ON).

housekeeping genes

- same copy number in all cells
- expressed in all cells
- medium copy number advantageous
- no pseudogene
- no alternate splicing in region you want to PCR

housekeeping genes

Commonly used housekeeping genes

- Glyceraldehyde-3-phosphate dehydrogenase mRNA
- Beta-actin mRNA
- MHC I (major histocompatibility complex I) mRNA
- Cyclophilin mRNA
- mRNAs for certain ribosomal proteins

E.g. RPLPO (ribosomal protein, large, PO; also known as 36B4, PO, L10E, RPPO, PRLPO, 60S acidic ribosomal protein PO, ribosomal protein L10, Arbp or acidic ribosomal phosphoprotein PO)

• 28S or 18S rRNA

Comparison of GAPDH Fold expression between study groups.

Group	Means Ct of <i>GAPDH</i>	2- ^{Ct}	experimental group/ Control group	Fold of gene expression
Healthy nonsmoker	24.42	4.45 E-8	4.45 E-8/4.45 E-8	1.00
Healthy smoker	24.53	4.12 E-8	4.12 E-8/4.45 E-8	0.93
Lung cancer nonsmoker	24.42	4.45 E-8	4.45 E-8/4.45 E-8	1.00
Lung cancer smoker	24.34	4.70 E-8	4.70 E-8/4.45 E-8	1.05

1. ΔCT

The expression ratio was calculated without a calibrator sample $2^{-\Delta Ct}$ according to the following equation:

 ΔCT (test) = CT gene of interest (target, test) – CT internal control

Finally, the expression ratio was calculated according to the formula

$2^{-\Delta Ct}$ = Normalized expression ratio

Fold of APEX1 expression Depending on $2^{-\Delta Ct}$ Method

groups	Means Ct of <i>APEX1</i>	Means Ct of <i>GAPDH</i>	ΔCt (Means Ct of <i>APEX1</i> - Means Ct of <i>GAPDH</i>)	2 -ΔCt	experimental group/ Control group	Fold of gene expression
Lung cancer smoker	27.44	24.34	3.1	0.116	0.116/0.007	16.57
Lung cancer non smoker	27.99	24.42	3.57	0.084	0.084/0.007	12.00
Healthy smoker	29.68	24.53	5.15	0.028	0.028/0.007	4.00
Healthy nonsmoker	31.88	24.42	7.1	0.014	0.007/0.007	1.00

2- ΔΔ CT

- Δ CT (test) = CT gene of interest (target, test) CT internal control
- ΔCT (calibrator) = CT gene of interest (target, calibrator) CT The
- Δ CT of the test samples was normalized to the Δ CT of the calibrator:
- $\Delta\Delta$ CT was calculated according to the following equation:

$\Delta\Delta$ CT= Δ CT (test)- Δ CT(calibrator)

Finally, the expression ratio was calculated according to the formula

$2^{-\Delta\Delta Ct}$ = Normalized expression ratio.

Fold of APEX1 expression Depending on $2^{-\Delta\Delta Ct}$ Method

groups	Means Ct of <i>Apex1</i>	Means Ct of <i>GAPDH</i>	Mean ΔCt Target (ct <i>Apex1</i> - ct <i>GAPDH</i>)	Mean ΔCt Calibrator (ct <i>Apex1</i> - ct <i>GAPDH</i>	ΔΔCt	2 ^{-ΔΔCt}	experiment al group/ Control group	Fold of gene expression
Lung cancer smoker	27.44	24.34	3.1	8.78	-5.68	51.26	51.26/3.20	16.01
Lung cancer non smoker	27.99	24.42	3.57	8.78	-5.21	37.01	37.01/3.20	11.6
Healthy smoker	29.68	24.53	5.15	8.78	-3.63	12.38	12.38/3.20	3.9
Healthy non smoker	31.88	24.42	7.1	8.78	-1.68	3.20	3.20/ 3.20	1.00

Comparison of the Genotype and Allele Frequencies of *APEX1* gene polymorphism Asp148Glu between Lung cancer smoker group and Healthy group

	Frequen	cies (%)		
<i>APEX1</i> polymorphsim Asp148Glu	Healthy non-smoker (n=30)	Lung cancer smoker (n=40)	P value	Odd ratio (95% CI)
TT	70.00 (n=21)	35.00 (n=14)		1.00 (Reference)
TG	23.33 (n=7)	37.50 (n=15)	0.041	3.26 (1.04-9.88)
GG	6.66 (n=2)	27.50 (n=11)	0.012	8.25 (1.58-23.02)
Т	81.67 (49)	53.75 (43)		1.00 (Reference)
G	18.33 (11)	46.25 (37)	0.0001	5.17 (2.35-11.38)

Comparison of the Genotype and Allele of *APEX1* gene polymorphsim Asp148Glu between Lung cancer nonsmoker group and Healthy non smoker group

	Frequen	cies (%)		Odd ratio (95% CI)
<i>APEX1</i> polymorphsim Asp148Glu	Healthy non-smoker (n=30)	Lung cancer non-smoker (n=40)	P value	
TT	70.00 (n=21)	47.50 (n=19)		1.00 (Reference)
TG	23.33 (n=7)	37.50 (n=15)	0.121	2.36 (0.79-7.05)
GG	6.66 (n=2)	15.00 (n=6)	0.171	3.3 (0.59-18.45)
Т	81.67 (49)	66.25 (53)		1.00 (Reference)
G	18.33 (11)	33.75 (27)	0.045	2.26 (1.01-5.05)

Comparison of the Genotype and Allele of *APEX1* gene polymorphism Asp148Glu between Healthy smoker group and Healthy group

APEX1	Frequen Asp14	cies (%) 48Glu	Dwalua	Odd ratio
Asp148Glu	Healthy non- smoker (n=30)	Healthy smoker (n=30)	P value	(95% CI)
TT	70.00 (n=21)	43.33 (n=13)		1.00 (Reference)
TG	23.33 (n=7)	33.33 (n=10)	0.167	2.30 (0.70-7.57)
GG	6.66 (n=2)	23.33 (n=7)	0.048	5.65 (1.01-31.47)
Т	81.67 (49)	60.00 (36)		1.00 (Reference)
G	18.33 (11)	40.00 (24)	0.010	2.96 (1.29-6.83)

